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Abstract

A set of CASE tools is described for developing for-

mal requirements speci�cations expressed in the SCR

(Software Cost Reduction) tabular notation. The tools

include an editor for building the speci�cations, a con-

sistency checker for testing the speci�cations for con-

sistency with a formal requirements model, a simula-

tor for symbolically executing the speci�cations, and a

veri�er for checking that the speci�cations satisfy se-

lected application properties. As background, the SCR

method for specifying requirements is reviewed, and a

formal requirements model is introduced. Examples are

presented to illustrate the tools.

1 Introduction

High assurance computer systems are computer sys-
tems where compelling evidence is required that the
system delivers its services in a manner that satis�es
certain critical properties. Examples of high assur-
ance systems include military command and control
systems, nuclear power plants, telephone networks,
medical systems (e.g., patient monitoring systems),
air tra�c control systems, and 
ight control systems.
Critical properties that such systems must enforce in-
clude security properties, which prevent unauthorized
disclosure, modi�cation, and withholding of sensitive
information (see, e.g., [11]); safety properties, which
prevent unintended events that result in death, injury,
illness, or damage to or loss of property; and real-time

properties, which require the system to deliver its re-
sults within speci�ed time intervals (see, e.g., [18]).

A promising approach for building high assurance
systems is to apply formalmethods. According to a re-
cent study, formal methods are \beginning to be used
seriously and successfully by industry: : : to develop
systems of signi�cant scale and importance" [6]. Es-
pecially important for developing high assurance sys-
tems are formal methods for specifying requirements.
Studies have shown that a large portion of the most se-
rious errors in safety-critical systems are requirements

errors (see, e.g., [19]). Formal speci�cation can reduce
requirements errors by reducing ambiguity and impre-
cision and by making instances of inconsistency and
incompleteness obvious. Given a formal requirements
speci�cation, formal analysis can detect many classes
of errors, some automatically.

One of the 12 methods included in the above study
is the Software Cost Reduction (SCR) requirements
method. Introduced originally to describe the func-
tional requirements of software precisely and unam-
biguously [15, 16], the SCR method has been extended
recently to describe system, rather than simply soft-

ware, requirements and to represent both functional
and nonfunctional (e.g., timing and accuracy) require-
ments [21, 24]. Designed for use by engineers, the SCR
method has been applied successfully to a number of
practical systems, including the A-7 aircraft's Oper-
ational Flight Program [15, 1]; a submarine commu-
nications system [14]; and safety-critical components
of two nuclear power plants, the Darlington plant in
Canada [22] and a second plant in Belgium [5]. More
recently, a version of the SCR method called CoRE [8]
was used to document the requirements of Lockheed's
C-130J Operational Flight Program [9].

While the above applications of the SCR method
rely on manual techniques, e�ective use of the method
in industrial settings requires powerful, robust tool
support. As observed in the formal methods study
[6], tool support for formal methods, though currently
weak and impoverished, must be \an integral part of
a broader software development tool suite." Further,
one of the original developers of the SCR method and
a leader in the certi�cation of the Darlington software
cites the need for tool support to make formalmethods
\practical" [22].

An important question is what form tool support
should take. To answer this question, our group is
developing a prototype toolset, called SCR*, for con-
structing and analyzing formal requirements speci�ca-
tions. The toolset, which is coded in C++ and runs
on SPARC workstations, includes a speci�cation edi-

tor for building and displaying the requirements spec-



i�cations, a simulator for symbolically executing the
speci�cations, and formal analysis tools for testing the
speci�cations for selected properties.

One analysis tool, called a consistency checker [10],
tests a requirements speci�cation for properties de-
rived from our formal requirements model [12]. Be-
cause the requirements model describes the prop-
erties that all SCR-style requirements speci�cations
must satisfy, the properties tested by the consistency
checker are independent of a particular application.
These properties are usually quite simple. They in-
clude proper syntax, type correctness, completeness
(e.g., no missing cases), and deterministic behavior.
A second analysis tool, called a veri�er, checks the
speci�cation for critical application properties, such
as safety properties, timing properties, and security
properties. Because veri�cation of application proper-
ties depends on a consistent (and complete) require-
ments speci�cation, analysis using a veri�er logically
follows analysis with a consistency checker.

An industrial-strength formalmethod should have a
formal (that is, mathematical) foundation and should
be usable by engineers, scalable, and cost-e�ective.
The tools described in this paper are an important
component of such a method for requirements speci-
�cation. They have a formal foundation, namely, our
requirements model [12]. They are easy to use: after
developing a requirements speci�cation in the SCR no-
tation, the engineer uses the tools to analyze the spec-
i�cation automatically and to execute it symbolically.
They should scale up to handle practical applications:
in two experiments, our tools detected several signi�-
cant errors in a moderate-size requirements speci�ca-
tion [13]. This evidence coupled with the high cost
(several million dollars) of the Darlington certi�cation
e�ort, where error checking was done by hand, sug-
gests that the tools are cost-e�ective.

The purpose of this paper is to introduce our
toolset and the formal requirements model that pro-
vides its semantics. Section 2 reviews the SCR require-
ments method and introduces an example to illustrate
the method. Section 3 summarizes our requirements
model. Sections 4{7 describe the speci�cation editor,
consistency checker, simulator, and veri�er that make
up our toolset. Sections 8 and 9 describe related work
and a process for developing requirements. Finally,
Section 10 contains our conclusions.

2 Review of the SCR Method

Background. The purpose of a requirements docu-
ment is to describe all acceptable system implemen-
tations [14]. To demonstrate a systematic method

for achieving this, the software requirements docu-
ment for the A-7 aircraft's Operational Flight Program
was published in 1979. This document introduces
many features associated with the SCR requirements
method|the tabular notation, the underlying �nite
state machine model, and special constructs for speci-
fying requirements, such as conditions and events, in-
put and output data items, mode classes, and terms.
Recently, a number of researchers, including Faulk
[7, 8, 9], van Schouwen [24, 25], and Parnas [21], have
extended and re�ned the original SCR method and
strengthened the method's formal foundation.

Faulk's thesis in 1989 [7] provided formal de�nitions
for parts of the A-7 model. In particular, it described
the condition tables as total functions and the mode
classes as �nite state machines de�ned over events.
A de�ciency in the original A-7 document is that a
mode class may be unde�ned in certain states; e.g.,
if no weapon was allocated, the Weapons mode class
was unde�ned. Faulk's model requires a mode class to
be de�ned in every state; e.g., when no weapon is allo-
cated, the Weapons mode class is in mode None. This
not only makes analysis of the speci�cations more ef-
�cient; using mode classes to partition the state space
also reduces the amount of detail, thus making the
speci�cations easier to understand.

In 1990, van Schouwen's thesis [24] presented a
system-level requirements speci�cation, also based on
the A-7 model, for the Water Level Monitoring System
(WLMS), part of the shutdown system for a nuclear
power plant. The WLMS speci�cation extends the
SCR method from software requirements to system
requirements and demonstrates the use of the method
to describe a system's functional requirements as well
as its precision and timing requirements.

In 1991, Parnas and Madey introduced the Four
Variable Model [21], which formalizes the innovations
in van Schouwen's thesis. The model, illustrated in
Figure 1, describes the required system behavior in
terms of quantities in the system's environment.

Four Variable Model. The Four Variable Model de-
scribes the required system functions, timing, and ac-
curacy as a set of mathematical relations on four sets
of variables|monitored and controlled variables and
input and output data items. A monitored variable

represents an environmental quantity that in
uences
system behavior, a controlled variable an environmen-
tal quantity that the system controls. A black box
speci�cation of required behavior is given as two re-
lations, REQ and NAT, from the monitored to the
controlled quantities. NAT, which de�nes the set of
possible values, captures any natural constraints on
the system behavior, such as those imposed by physi-
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Figure 1: Four Variable Model.

cal laws and by the system environment. REQ de�nes
additional constraints on the system to be built as
relations the system must maintain between the mon-
itored and the controlled quantities.

In the Four Variable Model, input and output data
items, which represent the system's input and output
devices, are treated as resources. Input data items
(e.g., sensors) are resources available to the system to
sample the monitored quantities. The relation IN de-
�nes the mapping from the monitored quantities to
the input data items. Similarly, the relation OUT de-
�nes the mapping from the output data items to the
controlled quantities. The use of monitored and con-
trolled quantities, rather than input and output data
items, to de�ne required behavior keeps the speci�-
cation in the problem domain and allows a simpler
speci�cation.

Like the Four Variable Model, our requirements
model can be used to describe both system require-
ments and software requirements. The former are
described by de�ning REQ, the required relation be-
tween the monitored and controlled variables, the lat-
ter by describing SOFTREQ1, the required relation
between the input and output data items. Thus, where
appropriate, we use the term input variable to repre-
sent either a monitored variable or an input data item
and the term output variable to represent either a con-
trolled variable or an output data item.

The next section reviews the constructs and tabu-
lar notation used in SCR requirements speci�cations
in terms of the Four Variable Model. Because our ini-
tial requirements model emphasizes the system's func-
tions, the discussion focuses on aspects of the Four
Variable Model that describe functional behavior.

SCR Constructs. To specify the relations of the
Four Variable Model in a practical and e�cient man-
ner, four other constructs, all introduced in the A-
7 requirements document [15], are useful. These are
modes, terms, conditions, and events. A mode class is
a state machine, whose states are called system modes

(or simply modes) and whose transitions are triggered
by events. Complex systems are de�ned by more than

1In the Four Variable Model, SOFT represents the software
implementation; by SOFTREQ, we mean the software require-
ments speci�cation.
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Figure 2: Requirements Spec. for Safety Injection.

one mode class, operating in parallel. A term is any
function of input variables, modes, or other terms that
helps make the speci�cation concise. A condition is a
predicate de�ned on one or more system entities (a
system entity is an input or output variable, mode, or
term) at some point in time. An event occurs when
any system entity changes value. A special event,
called an input event, occurs when an input variable
changes value. Another special event, called a condi-

tioned event, occurs if an event occurs when a speci�ed
condition is true.

To illustrate the SCR constructs, we consider a sim-
pli�ed version of the control system for safety injec-
tion described in [5]. The system uses three sensors to
monitor water pressure and adds coolant to the reac-
tor core when the pressure falls below some threshold.
The system operator blocks safety injection by turn-
ing on a \Block" switch and resets the system after
blockage by turning on a \Reset" switch. Figure 2
shows how SCR constructs could be used to specify
the requirements of the control system. Water pres-
sure and the \Block" and \Reset" switches are rep-
resented as monitored variables, WaterPres, Block,
and Reset; safety injection as a controlled variable,
Safety Injection; each sensor as an input data item;
and the hardware interface between the control system
software and the safety injection system as an output
data item.

The speci�cation illustrated in Figure 2 includes a
mode class Pressure, a term Overridden, and several
conditions and events. The mode class Pressure, an
abstract model of the monitored variable WaterPres,
contains three modes, TooLow, Permitted, and High.
At any given time, the system must be in one of
these modes. A drop in water pressure below a con-
stant Low causes the system to enter mode TooLow; an
increase in pressure above a larger constant Permit

causes the system to enter mode High. The term
Overridden is true if safety injection is blocked, false
otherwise. An example of a condition in the speci�ca-
tion is \WaterPres< Low". Events are denoted by the
notation \@T". Two examples of events are the input
event @T(Block=On) (the operator turns Block from
Off to On) and the conditioned event @T(Block=On)



WHEN WaterPres < Low (the operator turns Block
to On when water pressure is below Low).

SCR Tables. The A-7 requirements document [15]
introduced a special tabular notation for writing spec-
i�cations. The tabular notation facilitates industrial
application of the SCR method: Not only do engi-
neers �nd tables easy to understand and to develop;
in addition, tables can describe large quantities of re-
quirements data concisely. Among the tables in SCR
speci�cations are condition tables, event tables, and
mode transition tables. Each table de�nes a function.2

A condition table describes an output variable or term
as a function of a mode and a condition; an event ta-
ble describes either as a function of a mode and an
event. A mode transition table describes a mode as a
function of another mode and an event.

While condition tables de�ne total functions, event
tables and mode transition tables may de�ne partial
functions, because some events cannot occur when
certain conditions are true. For example, in the
above system, the event @T(Pressure=High) WHEN
Pressure=TooLow cannot occur, because starting from
TooLow, the system can only enter Permitted when a
state transition occurs.

Tables 1{3, each constructed with our toolset, are
part of REQ, the system requirements speci�cation
for the above control system. The tables use the SCR
bracketing notation to indicate the \class" of an ob-
ject (e.g., **: : :** for a mode class, *: : :* for a mode,
%: : :% for a monitored variable, %%: : :%% for a con-
trolled varable, !: : : ! for a term, and $: : :$ for a non-
numeric value). Future versions of the toolset will al-
low the user to change or omit this notation.

Table 1 is a mode transition table describing the
mode class Pressure as a function of the current mode
and the monitored variable WaterPres. Table 2 is an
event table describing the term Overridden as a func-
tion of Pressure, Block, and Reset. Table 3 is a con-
dition table describing the controlled variable Safety
Injection as a function of Pressure and Overridden.
Table 3 states, \If Pressure is High or Permitted or
if Pressure is TooLow and Overridden is true, then
Safety Injection is Off; if Pressure is TooLow and
Overridden is false, then Safety Injection is On."
The notation \@T(Inmode)" in a row of an event ta-
ble describes system entry into the mode in that row;
for example, \@T(Inmode)" in the �rst row of Table 2
means, \If the system enters High, then Overridden

becomes false."

2Although SCR speci�cations can be nondeterministic, our
initial model is restricted to deterministic systems.

Table 1: Mode Transition Table for Pressure.

Table 2: Event Table for Overridden.

Table 3: Condition Table for Safety Injection.



3 Formal Requirements Model

Although earlier requirements models, namely,
Faulk's automaton model [7], the model underlying
van Schouwen's speci�cation [24, 25], and the Four-
Variable Model, de�ne some aspects of the SCR re-
quirements method, these models are too abstract to
provide a formal basis for our tools. To provide a
precise and detailed semantics for the SCR method,
our model represents the system to be built as a �-
nite state automaton and describes the input and out-
put variables, conditions, events, and other constructs
that make up an SCR speci�cation in terms of that
automaton. Our automaton model is a special case
of the Four Variable Model. One signi�cant di�erence
is that the Four Variable Model represents naturally
continuous environmental quantities, such as pressure
and temperature, as continuous variables, whereas our
model represents these quantities as discrete variables.

Our requirements model de�nes sets of modes, en-
tity names, values, and data types and a special func-
tion TY, which maps an entity to its legal values. The
model de�nes system state in terms of the entities, a
condition as a predicate on the system state, and an in-
put event as a change in an input variable that triggers
a new system state. It then shows how a set of func-
tions, called table functions, can be derived from the
SCR tables. These table functions de�ne the trans-
form T , a special case of REQ (and SOFTREQ), which
maps the current state and an input event to a new
state. We present below excerpts from our require-
ments model [12] along with examples taken from the
system requirements speci�cation for the simple con-
trol system introduced above.

System State. We assume the existence of the fol-
lowing sets.

� MS is the union of N pairwise disjoint sets, called
mode classes. Each member of a mode class is
called a mode.

� TS is a union of data types, where each type is a
nonempty set of values.

� VS = MS [TS is the set of entity values.

� RF is a set of entity names r. RF is partitioned
into four subsets: MR, the set of mode class
names; IR, the set of input variable names; GR,
the set of term names; and OR, the set of output
variable names. For all r 2 RF, TY(r) � VS is
the type of the entity named r.

A system state s is a function that maps each entity
name r in RF to a value. More precisely, for all r 2 RF:

s(r) = v, where v 2 TY(r). Thus, by assumption, in
any state s, the system is in exactly one mode from
each mode class, and each entity has a unique value.

Example. In the sample system, the set of entity
names RF is de�ned by

RF = fBlock, Reset, WaterPres, Pressure,

SafetyInjection, Overriddeng:

The type de�nitions include

TY(Pressure) = fTooLow, Permitted, Highg

TY(WaterPres) = f0; 1; 2; � � � ; 2000g

TY(Overridden) = ftrue, falseg

TY(Block) = fOn; Offg:

Conditions. Conditions are de�ned on the values of
entities in RF. A simple condition is true, false, or
a logical statement r � v, where r 2 RF is an entity
name, � 2 f=; 6=; >;<;�;�g is a relational operator,
and v 2 TY(r) is a constant value.3 A condition is a
logical statement composed of simple conditions con-
nected in the standard way by the logical connectives
^, _, and NOT.

System (Software System). A system (software
system) � is a 4-tuple, � = (Em

; S; s0; T ); where

� E
m is a set of input events. A primitive event

is denoted as @T(r = v), where r is an entity in
RF and v 2 TY(r). An input event is a primi-
tive event @T(r = v), where r 2 IR is an input
variable.

� S is the set of possible system states.

� s0 is a special state called the initial state.

� T is the system transform, i.e., a function from
E
m � S into S.

Events. In addition to denoting primitive events,
the \@T" notation also denotes basic and conditioned
events. A basic event is denoted as @T(c), where c is
any simple condition. A simple conditioned event is
denoted as @T(c) WHEN d, where @T(c) is a basic
event and d is a simple condition or a conjunction of
simple conditions. Any basic event @T(c) can be ex-
pressed as the simple conditioned event @T(c) WHEN
true. A conditioned event e is composed of simple con-
ditioned events connected by the logical connectors ^
and _.

3Here as well as elsewhere in the formal model, v is de�ned as
a constant to keep the notation simple. Our formal model even-
tually generalizes this de�nition: v may be a function de�ned
on entities.



The logical statement represented by a simple con-
ditioned event is de�ned by

@T(c) WHEN d = NOT c ^ c0 ^ d; (1)

where the unprimed version of condition c denotes c
in the old state and the primed version denotes c in
the new state. Given c = r � v, we de�ne c0 as c0 =
(r � v)0 = r

0 � v. Based on these de�nitions and the
standard predicate calculus, any conditioned event can
be expressed as a logical statement.

Example. Applying the de�nition in (1), the condi-
tioned event @T(Block=On) WHEN Reset=Off can
be rewritten as Block0 = On ^ Block 6= On ^ Reset =
Off: This event occurs if both Block and Reset are
Off in the old state and Block is On in the new state.

Ordering the Entities. To compute the value of an
entity in the new state, the transform function may
use the values of entities in both the old state and the
new state. To describe the entities needed in the new
state, each entity r is associated with a subset of RF
called the new state dependencies set. Given entities
r and r̂ in RF , we say that r depends directly on r̂ if
r̂ is in r's new state dependencies set. The \depends
directly on" relation imposes a partial ordering on the
set RF . Thus, the entities in RF can be ordered as a
sequence R, where for all i and j such that ri and rj

belong to R, ri depends directly on rj implies that ri
follows rj in R (that is, i > j). The new state depen-
dencies set for entity ri in R is denoted as Dn

i
.

Example. The condition table in Table 3 shows
that the controlled variable SafetyInjection de-
pends on two entities in the new state, the mode class
Pressure and the term Overridden. Hence, the new
state dependencies set for SafetyInjection contains
Pressure and Overridden. The partial ordering of
the entities based on dependencies in the new state is
determined as follows: The three monitored variables
are �rst because they only depend on changes in the
environment. Next is the mode class Pressure, which
depends on WaterPres. Next is the term Overridden,
which depends on Pressure and two monitored vari-
ables, Block and Reset. The last entity in the partial
ordering is SafetyInjection. A sequence R satisfy-
ing this partial ordering is

R = < WaterPres, Block, Reset, Pressure,

Overridden, SafetyInjection> :

In sequence R, SafetyInjection= r6. Its new state
dependencies set is Dn

6 = fPressure, Overriddeng.

Table Functions. Each SCR table describes a table

function, called Fi, which de�nes an output variable,

a term, or a mode class ri. Each entity ri de�ned
by a table is associated with exactly one mode class,
Mj, 1 � j � N . To represent the relation between
an entity and a mode class, we de�ne a function �,
where �(i) = j i� entity ri is associated with mode
classMj . Using this notation,M�(i) denotes the mode
class associated with entity ri.

Example. The only mode class is Pressure. Hence,
N = 1 and M1 = Pressure. Because all three enti-
ties de�ned by tables, namely, r4 = Pressure, r5 =
Overridden, and r6 = SafetyInjection, are func-
tions of Pressure, we have �(4) = �(5) = �(6) = 1.

Presented below for condition, event, and mode tran-
sition tables is a typical format and a description of
how the table function is derived from a given table.

Modes Conditions

m1 c1;1 c1;2 : : : c1;p
m2 c2;1 c2;2 : : : c2;p

: : : : : : : : : : : : : : :

mn cn;1 cn;2 : : : cn;p

ri v1 v2 : : : vp

Table 4: Condition Table|Typical Format.

Condition Tables. Table 4 shows a typical format
for a condition table with n+1 rows and p+1 columns.
Each condition table describes an output variable or
term ri as a relation �i de�ned on modes, conditions,
and values. More precisely, �i = f(mj ; cj;k; vk) 2
M�(i) � Ci � TY(ri)g; where Ci is a set of conditions
de�ned on entities in RF. �i has the following four
properties:

1. The mj and the vk are unique.

2. [n

j=1mj =M�(i) (All modes are included).

3. For all j: _p

k=1cj;k = true (Coverage: The disjunction

of the conditions in each row of the table is true).

4. For all j; k; l; k 6= l: cj;k ^ cj;l = false (Disjointness:
The conjunction of any pair of conditions in a row of

the table is false).

These properties guarantee that �i is a function.
To make explicit entity ri's dependencies on other

entities, we consider an alternate form Fi of the func-
tion �i. To de�ne Fi, we require the new state depen-
dencies set, Dn

i
= fyi;1; yi;2; : : : ; yi;nig, where yi;1 is

the entity name for the associated mode class. Based
on Dn

i
and �i, we de�ne Fi as

Fi(yi;1; : : : ; yi;n
i
) =

8>><
>>:

v1 if _n

j=1 (yi;1=mj ^ cj;1)

v2 if _n

j=1 (yi;1=mj ^ cj;2)
...
vp if _n

j=1 (yi;1=mj ^ cj;p):



The function Fi is called a condition table function.
The four properties guarantee that Fi is total.

Example. Based on the new state dependencies set Dn

6

and Table 3, the condition table function for Safety
Injection, denoted F6, is de�ned by

SafetyInjection
0 = F6(Pressure; Overridden) =(

Off if Pressure=High _ Pressure=Permitted _
(Pressure= TooLow ^ Overridden= true)

On if Pressure= TooLow ^ Overridden= false

Modes Events

m1 e1;1 e1;2 : : : e1;p

m2 e2;1 e2;2 : : : e2;p
: : : : : : : : : : : : : : :

mn en;1 en;2 : : : en;p

ri v1 v2 : : : vp

Table 5: Event Table|Typical Format.

Event Tables. Table 5 illustrates a typical format for
an event table with n+1 rows and p+1 columns. Each
event table describes an output variable or term ri as
a relation �i between modes, conditioned events, and
values, i.e., �i = f(mj ; ej;k; vk) 2M�(i)�Ei�TY(ri)g;
where Ei is a set of conditioned events de�ned on en-
tities in RF. �i has the following two properties:

1. The mj and the vk are unique.

2. For all j; k; l; k 6= l: ej;k ^ ej;l = false (Disjointness:

The conjunction of each pair of events in a row of the
table is false).

These properties and assumptions on input events
guarantee that �i is a function. As with condition
tables, we make explicit ri's dependency on other en-
tities by de�ning an alternate form Fi of the function
�i. To de�ne Fi, we require both the new state de-
pendencies set Dn

i
and an old state dependencies set

D
o

i
= fxi;1; xi;2; : : : ; xi;mi

g, where Do

i
� RF contains

the entities needed in the old state to compute ri and
xi;1 is the entity name for the associated mode class.
Based on D

o

i
, Dn

i
, and �i, Fi is de�ned by

Fi(xi;1; : : : ; xi;m
i
; y0

i;1; : : : ; y
0

i;n
i

) =8>><
>>:

v1 if _n

j=1 (xi;1=mj ^ ej;1)

v2 if _n

j=1 (xi;1=mj ^ ej;2)
...

vp if _n

j=1 (xi;1=mj ^ ej;p):

The function Fi is called an event table function.

Example. Using Table 2, the old and new de-
pendencies sets for the event table Overridden

can be derived. These are D
o

5 = D
n

5 =

fBlock, Reset, Pressureg. Given Do

5, D
n

5 , and Ta-
ble 2, the event table function for Overridden is de-
�ned by

Overridden
0 =

F5(Block;Reset;Pressure;Block
0;Reset0;Pressure0g =8>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>:

true if (Pressure= TooLow ^ Block
0 = On ^

Block = Off ^ Reset = Off) _
(Pressure= Perm. ^ Block0 = On ^
Block = Off ^ Reset = Off)

false if (Pressure= TooLow ^ Reset0 = On ^
Reset = Off) _
(Pressure= Perm. ^ Reset

0 = On ^
Reset = Off) _
(Pressure0 = High ^ Pressure 6= High) _
(Pressure0=TooLow ^ Pressure 6=TooLow) _
(Pressure0 = Perm. ^ Pressure 6= Perm.)

Old Mode Event New Mode

m1 e1;1 m1;1

e1;2 m1;2

: : : : : :

e1;k1 m1;k1

: : : : : : : : :

mn en;1 mn;1

en;2 mn;2

: : : : : :

en;kn mn;kn

Table 6: Mode Transition Table|Typical Format.

Mode Transition Tables. Table 6 shows a typical
format for a mode transition table for an entity ri

that names a mode class M�(i). The table describes
ri as a relation �i = f(mj ; ej;k;mj;k) 2 M�(i) � Ei �
M�(i)g; where Ei is a set of conditioned events de�ned
on entities in RF. �i has the following four properties:

1. The mj are unique.

2. For all k 6= k0, mj;k 6= mj;k0 , and for all j and for all

k, mj 6= mj;k.

3. For all j; k; k0; k 6= k0: ej;k ^ ej;k0 = false (Disjoint-

ness: The conjunction of any pair of conditioned

events in a row of the table is false).

4. For all m 2M�(i), there exists j such that mj = m or

there exist j and k such thatmj;k = m (Each mode in

the mode class is in either �i's domain or its image).

These properties and assumptions on input events
guarantee that Fi is a function. It is easy to show
that a mode transition table with the format shown
in Table 6 can be expressed in the format shown for
an event table. Hence, a mode transition table can be
expressed as an event table function Fi.

Example. Based on Table 1, the old and new de-
pendencies sets for the mode class Pressure are de-
�ned by D

o

i
= fWaterPres, Pressureg and D

n

i
=



fWaterPresg. Given D
o

i
, Dn

i
, and Table 1, the table

function for Pressure is de�ned by

Pressure
0 =

F4(Pressure;WaterPres;WaterPres
0g =8>>>>>>>>><

>>>>>>>>>:

TooLow if Pressure= Perm. ^ WaterPres0 < Low ^

WaterPres 6< Low

High if Pressure= Perm. ^ WaterPres0 � Permit ^

WaterPres 6� Permit

Perm. if (Pressure= TooLow ^ WaterPres0 � Low ^

WaterPres 6� Low) _
(Pressure= High ^ WaterPres0 < Permit ^

WaterPres 6< Permit):

4 Speci�cation Editor

To create, modify, or display a speci�cation, the
user invokes the speci�cation editor. As illustrated
in Figure 3, the editor lists the tables and dictionar-
ies that make up a speci�cation in a window labeled
\Speci�cation Contents". The tables are organized
into event, mode transition, and condition tables. By
double clicking on any table class listed in the Spec-
i�cation Contents, e.g., \Event Table", the user can
list all tables of that class in the speci�cation. In the
example shown in Figure 3, only a single event table
exists { the one de�ning the term !Overridden!. Dou-
ble clicking on \!Overridden!" displays Table 2.

Figure 3: Contents of a Speci�cation.

Each speci�cation contains four dictionaries: the
constant, type, mode class, and variable dictionaries.
The constant dictionary assigns value to constants in
the speci�cation, while the type dictionary describes
each user-de�ned type in terms of some base type. For
each mode class in the speci�cation, the mode class

dictionary lists the modes in the class along with its

initial value. For each term and monitored and con-
trolled variable in the speci�cation, the variable dic-

tionary lists the variable's type, initial value, and ac-
curacy requirements.

Figure 4: Constant Dictionary.

Figure 5: Type Dictionary.

Figure 6: Mode Class Dictionary.

Figures 4{7 show the constant, type, mode class,
and variable dictionaries for the simple safety injec-
tion system introduced above. The constant dictio-
nary in Figure 4 de�nes two constants, $Low$=900
and $Permit$=1000. The type dictionary in Figure 5
describes two user-de�ned types: +Pressure+, a non-
negative integer not exceeding 2000, and +Switch+,
an enumerated type with values $OFF$ and $ON$.
The mode class dictionary in Figure 6 de�nes the com-
ponent modes and initial value of **Pressure**, the
single mode class in the speci�cation. Finally, the
variable dictionary in Figure 7 de�nes the type, initial
value, and accuracy requirements of the �ve variables
in the speci�cation.



Figure 7: Variable Dictionary.

5 Consistency Checker

Listed below are consistency checks derived from
our formal requirements model. These checks, which
determine whether the speci�cations are well-formed,
are independent of a particular system state. They
are a form of static analysis: they can be performed
directly on the information in the tables and the dic-
tionaries. For example, the Disjointness and Coverage
checks on a condition table can be completed using
only the information in the table and the relevant type
de�nitions in the type dictionary.

� Proper Syntax. Each component of the spec-
i�cation has proper syntax. For example, each
condition and event is well-formed.

� Type Correctness. Each variable has a de�ned
type, and all type de�nitions are satis�ed.

� Completeness of Variable and Mode Class

De�nitions. The value of each controlled vari-
able, term, and mode class is de�ned. (Most
variables will be de�ned by tables, but standard
mathematical de�nitions may be given for some
controlled variables and terms.)

� Reachability. Every mode in a mode class is
reachable. (This property can be easily checked
by analyzing the mode transition tables.)

� Initial Values. Initial values are provided for all
mode classes, monitored variables, and all terms
and controlled variables not de�ned by condition
tables. (Initial values are not needed for variables
de�ned by condition tables, since they can be de-
rived from the tables. If initial values are pro-

vided, they must be consistent with the condition
table de�nitions.)

� Disjointness. To make the speci�cations deter-
ministic, each condition, event, and mode tran-
sition table table must satisfy the Disjointness
property. That is, in a given state, each controlled
variable and term has a unique value, and if a
state transition occurs, the new state is unique.

� Coverage. Each condition table satis�es the
Coverage property. That is, each variable de-
scribed by a condition table is de�ned everywhere
in its domain.

� Lack of Circularity. No circular dependencies
exist.

Clearly, the user must invoke some checks before oth-
ers. For example, checks for proper syntax must pre-
cede type checking, and type checking should precede
checks that the Coverage property is satis�ed.

A prototype consistency checker that performs
most of the above checks has been implemented. The
user may apply the consistency checker either to an
individual table or to selected components of the com-
plete speci�cation. In the �rst two examples included
in this section, consistency checking was applied to an
individual table (see Figures 8 and 9). In the third,
\All Checks" were applied to the complete speci�ca-
tion (see Figure 10).

Examples. Figure 8 shows the results of applying
consistency checking to an erroneous version of the
mode transition table in Table 1. The consistency
checker �nds two type errors: In the �rst column of
the table's �rst and second rows, the mode names are



Figure 8: Type Errors in a Mode Transition Table.

Figure 9: Coverage and Disjointness Errors in a Condition Table.

misspelled (i.e., \ToLow" instead of \TooLow" and
\Permit" instead of \Permitted"). By double clicking
on each error description in the Results box of the CC
Checker, the user can localize the error. For exam-
ple, in Figure 8, the user double clicked on the �rst
error listed; to indicate the corresponding type error,
the simulator highlights \ToLow" in row 1 of the table
de�ning **Pressure**.

Shown in Figure 9 is a variation of Table 3, which
omits the \NOT" in the rightmost column of the sec-
ond row. Checking this condition table for consistency
reveals two errors: The table's second row violates
both Coverage (Overridden _ Overridden 6= true)
and Disjointness (Overridden ^ Overridden 6= false).
Double clicking on an error description in the Results
box of the Consistency Checker will display the ta-
ble in which the error occurs with the error's location
highlighted (see row 2 of the condition table in Fig-
ure 9). In the case of Disjointness, the tool highlights
the two overlapping table entries. In the case of Cov-
erage, the tool highlights the row that is in error.

Disjointness, the second property required of event
tables, is violated if two events in a row, say e and
e
0, overlap, i.e., e ^ e

0 6= false. Figure 10 contains a
variation of the event table in Table 2. Running the
consistency checker detects a Disjointness error.

In checking for Disjointness, the consistency
checker evaluates the expression, [@T(Block = On)
WHEN Reset = Off] ^ [@T(Block = On) _
@T(Reset = On)]. Rewriting this expression
as a disjunction produces [@T(Block=On) WHEN
Reset=Off ^ @T(Block=On)] _ [@T(Block=On)
WHEN Reset=Off ^ @T(Reset=On)]. Apply-
ing [1] to the �rst clause of the disjunction, we
have [Block0 =On ^ Block=Off ^ Reset=Off] ^
[Block0 =On ^ Block=Off]. This simpli�es to
Block0 =On ^ Block=Off ^ Reset=Off. Because
this expression does not equal false, the speci�ed be-
havior is nondeterministic. This means that, if in
TooLow or Permitted mode the operator turns Block
on when Reset is o�, the system may nondeterminis-
tically change Overridden to true or to false.



Figure 10: Disjointness Error in an Event Table.

6 Simulator

In a typical session with the simulator, the user
begins with some \starting" state, that is, either the
initial state or a state he de�nes.4 To start a simula-
tion, the user enters a sequence of one or more input
events. To process each input event and thus simu-
late system execution, the user clicks on the Step But-
ton (see the middle of Figure 11), and the simulator
processes the next input event in the sequence. To
compute each new state from an input event and the
current state, the simulator applies T , the transform
(i.e., next-state) function of our requirements model.

The simulator displays each system state in a win-
dow called the Simulator Display (see Figure 11). As
each new state is computed, the simulator updates the
Display window to re
ect the new state. The simulator
also supports a second window, called the Log window
(see Figure 12). The Log shows the state history be-
ginning with the \starting" state, organized into Mon-
itored Variables and Dependent Variables. In the Log,
the starting state is displayed in full; for each subse-
quent state, the Log lists the input event that caused
the transition along with each mode class, term, and
controlled variable whose value has changed.

In the example shown in Figure 11, the user has
entered four events in the \Pending Events" area of
the Display window. The upper portion of the Dis-

4Note that a starting state that di�ers from the initial state
may not be reachable.

play window in Figure 11 shows the system state after
the simulator has processed three of the four pending
events (i.e., the user has clicked on the Step button
three times). The Log in Figure 12 shows the system
history after all four events have been processed.

To display the rule that caused a given entity to
change value, the user double clicks on the entity and
its value in the Log. The simulator then displays the
table that de�nes the variable, highlighting the rule
that led to the change. For example, double click-
ing on the expression \%%SafetyInjection%%=$ON$"
near the bottom of the Log in Figure 12 will cause
the simulator to display the table, shown in Figure 12
on the right, that caused SafetyInjection to change
from Off to On. The simulator also highlights the rule
that produced the change. In Figure 12, the high-
lighted rule is \If Pressure is TooLow and Overridden

is false, then SafetyInjection is On."

7 Veri�er.

We are investigating the design of a state explo-
ration tool that veri�es application properties mechan-
ically. Such a tool analyzes all states of a �nite state
machine model of a system to determine whether they
satisfy selected properties. Our state-based require-
ments model and its transform function T provide a
basis for building such a tool for verifying requirements
speci�cations.



Figure 11: Simulator Display Showing Four Pending Events.

Figure 12: Simulator Log and Table with Rule Highlighted.

We are also investigating the linkage of our toolset
with a mechanical proof system, such as EVES [17]
or PVS [20], to support another form of veri�cation|
theorem proving. Such a tool can check formal proofs
that the speci�cations satisfy properties of interest.
Proofs would be done by hand using deductive rea-
soning (see, e.g., [11]) and checked mechanically using
the proof system.

To illustrate application properties we wish to ver-
ify, some examples are listed. Each is a property of
the simple control system described above.

1. If Block is Off and Pressure is TooLow, then

SafetyInjection is On.

2. If Block is On and Reset is Off, then

SafetyInjection is Off.

3. If WaterPres is greater than Low and WaterPres is less

than Permit, then Pressure is Permitted.

4. If WaterPres0 is greater than or equal to Low and

Pressure is TooLow, then Pressure0 is not equal to

High.

5. If @T(WaterPres < Low) WHEN Block is Off, then

SafetyInjection0 is On.

8 Related Work.

In a related e�ort, Atlee and Gannon used model
checking, a state exploration technique pioneered by
Clarke [3], to test SCR requirements speci�cations for
application properties [2]. Their tool analyzes proper-



ties de�ned in terms of mode classes and input vari-
ables only (e.g., Properties 3 and 4 above). Their state
model is derived from the mode transition tables, ex-
tended by hand to incorporate the needed variable def-
initions. Such analysis is signi�cant because it checks
that the expressions in the mode transition tables cap-
ture desired properties. However, our requirements
model provides the basis for a more general analysis:
properties involving all of the entities can be checked
against a state machine model of the complete speci�-
cations. That model is captured by our formal de�ni-
tions of system and the transform function that maps
an input event and the current state to the new state.

In other related work, Parnas describes ten small
theorems related to his tabular notation (similar to
other SCR notation) and challenges the developers of
automated proof systems to prove the theorems [22].
Two of the theorems, the Domain Coverage Theorem
and the Disjoint Domains Theorem, are slight vari-
ations of our Coverage and Disjointness properties.
SRI researchers accepted Parnas' challenge. In a re-
cent paper [23], they describe the mechanical proof of
nine of Parnas' theorems using the \tcc-strategy"(tcc's
are type-correctness conditions) of their proof system
PVS [20]. Based on this result, we are investigating
the utility of PVS and other mechanical provers for
consistency checking.

9 Requirements Process

We envision the following process for developing re-
quirements speci�cations for high assurance systems.
Although such a process is an idealization of a real-
world process, it shows how tools such as ours can be
used incrementally to develop high assurance require-
ments speci�cations.

1. A formal notation, such as the SCR notation, is used

to specify the requirements.

2. An automated consistency checker tests the speci�-

cation for syntax and type correctness, coverage, de-
terminism, and other application-independent prop-

erties.

3. The speci�cation is executed symbolically using a sim-

ulator to ensure that it captures the customers' intent;
the simulator can be run either manually as described

above, or automatically using an input script (see,

e.g., [4]).

4. In the later stages of requirements, mechanical sup-
port is used to analyze the speci�cation for applica-

tion properties. Initially, a small subset with �xed

parameters and only a few states is extracted from
the speci�cation and a state exploration tool is used.

This may be repeated, each time with a di�erent or

larger subset. Once there is su�cient con�dence in

the speci�cation, a deductive proof system may be
used to help verify the complete speci�cation or, more

likely, safety-critical components.

10 Concluding Remarks

In our view, the use of properly designed software
tools, in conjunction with a formal requirements nota-
tion, is an important step in developing high assurance
systems. Such tools can

� Liberate people to work on more creative

tasks. For example, although consistency checks
are quite simple, the number of such checks
needed in practical requirements speci�cations
can be very large. In the Darlington plant cer-
ti�cation, Parnas found that \reviewers spent too
much of their time and energy checking for sim-
ple, application-independent properties" which
distracted them from the \more di�cult, safety-
relevant issues" [22]. Automating such checks can
save both the speci�ers and reviewers consider-
able e�ort, thus liberating them to do more cre-
ative work.

� Perform some tasks more e�ectively than

people. Tools can often �nd errors that people
miss. In the experiments cited above, our tools
found many signi�cant errors overlooked by two
independent review teams [13]. This does not in-
dicate reviewer incompetence but illustrates in-
stead that, for large speci�cations, tools are better
than people for detecting certain classes of errors,
such as missing cases and nondeterminism.

� Increase con�dence in the speci�cation's

correctness. Analyzing the speci�cations with
software tools can increase con�dence that the
speci�cations capture the required behavior. By
symbolically executing the speci�cations using a
simulator, the speci�ers (and future users) can
determine whether the external behavior repre-
sented by the speci�cations captures their intent.
By running the veri�er, the speci�ers and the re-
viewers can check that the speci�cation satis�es
critical application properties.

We expect the process outlined above, which uses
formal notation to specify requirements and computer-
supported formal analysis to detect errors, to produce
high quality requirements speci�cations. Such speci�-
cations are an important step toward developing high
assurance systems.



Acknowledgments

R. Je�ords is a major contributor to our requirements

model. M. Archer, S. Faulk, R. Je�ords, and J. Kirby
each provided many valuable suggestions for improving the

paper. D. Kiskis and A. Rose contributed to the toolset's

design and implementation.

References

[1] T. Alspaugh, S. Faulk, K. Britton, R. Parker, D. Par-
nas, and J. Shore. Software requirements for the A-7E

aircraft. Technical Report NRL-9194, NRL, Wash.,

DC, 1992.

[2] J. Atlee and J. Gannon. State-based model check-

ing of event-driven system requirements. In Proc.,

ACM SIGSOFT Conf. on Software for Critical Sys-

tems, New Orleans, December 1991.

[3] E. M. Clarke, E. Emerson, and A. Sistla. Automatic

veri�cation of �nite state concurrent systems using

temporal logic speci�cations. ACM Trans. on Prog.

Lang. and Systems, 8(2), April 1986.

[4] P. Clements, C. Heitmeyer, B. Labaw, and A. Rose.

MT: A toolset for specifying and analyzing real-time

systems. In Proc., Real-Time Systems Symp., Raleigh,
NC, December 1993.

[5] P.-J. Courtois and D. L. Parnas. Documentation for
safety critical software. In Proc., 15th Intern. Conf.

on Software Eng., Baltimore, 1993.

[6] D. Craigen et al. An international survey of indus-

trial applications of formal methods. Technical Re-

port NRL-9581, NRL, Wash., DC, 1993.

[7] S. Faulk. State Determination in Hard-Embedded Sys-

tems. PhD thesis, Univ. of No. Carolina, Chapel Hill,

1989.

[8] S. R. Faulk, J. Brackett, P. Ward, and J. Kirby. The

CoRE method for real-time requirements. IEEE Soft-

ware, 9(5), September 1992.

[9] S. R. Faulk, L. Finneran, J. Kirby, S. Shah, and J. Sut-

ton. Experience applying the CoRE method to the
Lockheed C-130J. In Proc., Ninth Annual Conf. on

Computer Assurance, Gaithersburg, MD, June 1994.

[10] C. Heitmeyer, B. Labaw, and D. Kiskis. Consistency

checking of SCR-style requirements speci�cations. In
Proc., International Symposium on Requirements En-

gineering, March 1995.

[11] C. Heitmeyer and N. Lynch. The Generalized Rail-

road Crossing: A case study in formal veri�cation

of real-time systems. In Proc., Real-Time Systems

Symp., San Juan, Puerto Rico, December 1994.

[12] C. L. Heitmeyer, R. D. Je�ords, and B. G. Labaw.
Tools for analyzing SCR-style requirements speci�ca-

tions: A formal foundation. Technical Report NRL-

7499, NRL, Wash., DC, 1995. In preparation.

[13] C. L. Heitmeyer and B. G. Labaw. Consistency checks
for SCR-style requirements speci�cations. Technical

Report 9586, NRL, Wash DC, December 1993.

[14] C. L. Heitmeyer and J. McLean. Abstract require-

ments speci�cations: A new approach and its appli-
cation. IEEE Trans. Softw. Eng., SE-9(5), September

1983.

[15] K. Heninger, D. Parnas, J. Shore, and J. Kallander.

Software requirements for the A-7E aircraft. Technical

Report 3876, NRL, Wash., DC, 1978.

[16] K.L. Heninger. Specifying software requirements for

complex systems: New techniques and their appli-
cation. IEEE Trans. Softw. Eng., SE-6(1), January

1980.

[17] S. Kromodimoeljo, W. Pase, M. Saaltink, D. Craigen,

and I. Meisels. A tutorial on EVES. Technical report,

Odyssey Research Associates, Ottawa, Ont., 1993.

[18] C. E. Landwehr, C. L. Heitmeyer, and J. McLean. A
security model for military message systems. ACM

Trans. on Comp. Syst., 2(3):198{222, August 1984.

[19] Robin R. Lutz. Targeting safety-related errors during

software requirements analysis. In Proc., First ACM

SIGSOFT Symp. on the Foundations of Software En-

gineering, Los Angeles, CA, December 1993.

[20] S. Owre, N. Shankar, and J. Rushby. User guide for
the PVS speci�cation and veri�cation system (Draft).

Technical report, Computer Science Lab, SRI Intl.,

Menlo Park, CA, 1993.

[21] D. Parnas and J. Madey. Functional documentation

for computer systems engineering (Version 2). Tech-
nical Report CRL 237, Telecommunications Research

Inst. of Ontario (TRIO), McMaster Univ., Hamilton,

Ont., 1991.

[22] D. L. Parnas. Some theorems we should prove. In
Proc., 1993 Intern. Conf. on HOL Theorem Proving

and Its Applications, Vancouver, BC, August 1993.

[23] J. Rushby and M. Srivas. Using PVS to prove some

theorems of David Parnas. In Proc., 1993 Intern.

Conf. on HOL Theorem Proving and Its Applications,
Vancouver, BC, August 1993.

[24] A. J. van Schouwen. The A-7 requirements model: Re-
examination for real-time systems and an application

for monitoring systems. Technical Report TR 90-276,

Queen's Univ., Kingston, Ont., 1990.

[25] A. J. van Schouwen, D. L. Parnas, and J. Madey. Doc-

umentation of requirements for computer systems. In
Proc., RE'93 Requirements Symp., San Diego, Jan-

uary 1993.


